3.2.28 \(\int \frac {\text {sech}^2(c+d x)}{(a+b \tanh ^2(c+d x))^3} \, dx\) [128]

Optimal. Leaf size=96 \[ \frac {3 \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{8 a^{5/2} \sqrt {b} d}+\frac {\tanh (c+d x)}{4 a d \left (a+b \tanh ^2(c+d x)\right )^2}+\frac {3 \tanh (c+d x)}{8 a^2 d \left (a+b \tanh ^2(c+d x)\right )} \]

[Out]

3/8*arctan(b^(1/2)*tanh(d*x+c)/a^(1/2))/a^(5/2)/d/b^(1/2)+1/4*tanh(d*x+c)/a/d/(a+b*tanh(d*x+c)^2)^2+3/8*tanh(d
*x+c)/a^2/d/(a+b*tanh(d*x+c)^2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3756, 205, 211} \begin {gather*} \frac {3 \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{8 a^{5/2} \sqrt {b} d}+\frac {3 \tanh (c+d x)}{8 a^2 d \left (a+b \tanh ^2(c+d x)\right )}+\frac {\tanh (c+d x)}{4 a d \left (a+b \tanh ^2(c+d x)\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^3,x]

[Out]

(3*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(8*a^(5/2)*Sqrt[b]*d) + Tanh[c + d*x]/(4*a*d*(a + b*Tanh[c + d*x]^
2)^2) + (3*Tanh[c + d*x])/(8*a^2*d*(a + b*Tanh[c + d*x]^2))

Rule 205

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (
IntegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[
p])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3756

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/(c^(m - 1)*f), Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)
^n)^p, x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2] && (IntegersQ[n, p
] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rubi steps

\begin {align*} \int \frac {\text {sech}^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{\left (a+b x^2\right )^3} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {\tanh (c+d x)}{4 a d \left (a+b \tanh ^2(c+d x)\right )^2}+\frac {3 \text {Subst}\left (\int \frac {1}{\left (a+b x^2\right )^2} \, dx,x,\tanh (c+d x)\right )}{4 a d}\\ &=\frac {\tanh (c+d x)}{4 a d \left (a+b \tanh ^2(c+d x)\right )^2}+\frac {3 \tanh (c+d x)}{8 a^2 d \left (a+b \tanh ^2(c+d x)\right )}+\frac {3 \text {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\tanh (c+d x)\right )}{8 a^2 d}\\ &=\frac {3 \tan ^{-1}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{8 a^{5/2} \sqrt {b} d}+\frac {\tanh (c+d x)}{4 a d \left (a+b \tanh ^2(c+d x)\right )^2}+\frac {3 \tanh (c+d x)}{8 a^2 d \left (a+b \tanh ^2(c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.59, size = 77, normalized size = 0.80 \begin {gather*} \frac {\frac {3 \text {ArcTan}\left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{a^{5/2} \sqrt {b}}+\frac {\tanh (c+d x) \left (5 a+3 b \tanh ^2(c+d x)\right )}{a^2 \left (a+b \tanh ^2(c+d x)\right )^2}}{8 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^3,x]

[Out]

((3*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(a^(5/2)*Sqrt[b]) + (Tanh[c + d*x]*(5*a + 3*b*Tanh[c + d*x]^2))/(
a^2*(a + b*Tanh[c + d*x]^2)^2))/(8*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(283\) vs. \(2(82)=164\).
time = 2.54, size = 284, normalized size = 2.96

method result size
derivativedivides \(\frac {-\frac {2 \left (-\frac {5 \left (\tanh ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a}-\frac {3 \left (5 a +4 b \right ) \left (\tanh ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a^{2}}-\frac {3 \left (5 a +4 b \right ) \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a^{2}}-\frac {5 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a}\right )}{\left (a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a \right )^{2}}-\frac {3 \left (-\frac {\left (-a +\sqrt {b \left (a +b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}+\frac {\left (a +\sqrt {b \left (a +b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{4 a}}{d}\) \(284\)
default \(\frac {-\frac {2 \left (-\frac {5 \left (\tanh ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a}-\frac {3 \left (5 a +4 b \right ) \left (\tanh ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a^{2}}-\frac {3 \left (5 a +4 b \right ) \left (\tanh ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 a^{2}}-\frac {5 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 a}\right )}{\left (a \left (\tanh ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+2 a \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 b \left (\tanh ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+a \right )^{2}}-\frac {3 \left (-\frac {\left (-a +\sqrt {b \left (a +b \right )}-b \right ) \arctanh \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}-a -2 b \right ) a}}+\frac {\left (a +\sqrt {b \left (a +b \right )}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{2 a \sqrt {b \left (a +b \right )}\, \sqrt {\left (2 \sqrt {b \left (a +b \right )}+a +2 b \right ) a}}\right )}{4 a}}{d}\) \(284\)
risch \(-\frac {5 a^{3} {\mathrm e}^{6 d x +6 c}-a^{2} b \,{\mathrm e}^{6 d x +6 c}-9 a \,b^{2} {\mathrm e}^{6 d x +6 c}-3 b^{3} {\mathrm e}^{6 d x +6 c}+15 a^{3} {\mathrm e}^{4 d x +4 c}-a^{2} b \,{\mathrm e}^{4 d x +4 c}+9 a \,b^{2} {\mathrm e}^{4 d x +4 c}+9 b^{3} {\mathrm e}^{4 d x +4 c}+15 a^{3} {\mathrm e}^{2 d x +2 c}+13 a^{2} b \,{\mathrm e}^{2 d x +2 c}-11 a \,b^{2} {\mathrm e}^{2 d x +2 c}-9 b^{3} {\mathrm e}^{2 d x +2 c}+5 a^{3}+13 a^{2} b +11 a \,b^{2}+3 b^{3}}{4 \left (a^{2}+2 a b +b^{2}\right ) \left (a \,{\mathrm e}^{4 d x +4 c}+b \,{\mathrm e}^{4 d x +4 c}+2 a \,{\mathrm e}^{2 d x +2 c}-2 b \,{\mathrm e}^{2 d x +2 c}+a +b \right )^{2} a^{2} d}-\frac {3 \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}-2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{16 \sqrt {-a b}\, d \,a^{2}}+\frac {3 \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {a \sqrt {-a b}-b \sqrt {-a b}+2 a b}{\left (a +b \right ) \sqrt {-a b}}\right )}{16 \sqrt {-a b}\, d \,a^{2}}\) \(389\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^2/(a+b*tanh(d*x+c)^2)^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*(-5/8/a*tanh(1/2*d*x+1/2*c)^7-3/8*(5*a+4*b)/a^2*tanh(1/2*d*x+1/2*c)^5-3/8*(5*a+4*b)/a^2*tanh(1/2*d*x+1
/2*c)^3-5/8/a*tanh(1/2*d*x+1/2*c))/(a*tanh(1/2*d*x+1/2*c)^4+2*a*tanh(1/2*d*x+1/2*c)^2+4*b*tanh(1/2*d*x+1/2*c)^
2+a)^2-3/4/a*(-1/2*(-a+(b*(a+b))^(1/2)-b)/a/(b*(a+b))^(1/2)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2)*arctanh(a*tanh
(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2))+1/2*(a+(b*(a+b))^(1/2)+b)/a/(b*(a+b))^(1/2)/((2*(b*(a+b))
^(1/2)+a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2))))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 366 vs. \(2 (82) = 164\).
time = 0.63, size = 366, normalized size = 3.81 \begin {gather*} \frac {5 \, a^{3} + 13 \, a^{2} b + 11 \, a b^{2} + 3 \, b^{3} + {\left (15 \, a^{3} + 13 \, a^{2} b - 11 \, a b^{2} - 9 \, b^{3}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (15 \, a^{3} - a^{2} b + 9 \, a b^{2} + 9 \, b^{3}\right )} e^{\left (-4 \, d x - 4 \, c\right )} + {\left (5 \, a^{3} - a^{2} b - 9 \, a b^{2} - 3 \, b^{3}\right )} e^{\left (-6 \, d x - 6 \, c\right )}}{4 \, {\left (a^{6} + 4 \, a^{5} b + 6 \, a^{4} b^{2} + 4 \, a^{3} b^{3} + a^{2} b^{4} + 4 \, {\left (a^{6} + 2 \, a^{5} b - 2 \, a^{3} b^{3} - a^{2} b^{4}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + 2 \, {\left (3 \, a^{6} + 4 \, a^{5} b + 2 \, a^{4} b^{2} + 4 \, a^{3} b^{3} + 3 \, a^{2} b^{4}\right )} e^{\left (-4 \, d x - 4 \, c\right )} + 4 \, {\left (a^{6} + 2 \, a^{5} b - 2 \, a^{3} b^{3} - a^{2} b^{4}\right )} e^{\left (-6 \, d x - 6 \, c\right )} + {\left (a^{6} + 4 \, a^{5} b + 6 \, a^{4} b^{2} + 4 \, a^{3} b^{3} + a^{2} b^{4}\right )} e^{\left (-8 \, d x - 8 \, c\right )}\right )} d} - \frac {3 \, \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{8 \, \sqrt {a b} a^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^2/(a+b*tanh(d*x+c)^2)^3,x, algorithm="maxima")

[Out]

1/4*(5*a^3 + 13*a^2*b + 11*a*b^2 + 3*b^3 + (15*a^3 + 13*a^2*b - 11*a*b^2 - 9*b^3)*e^(-2*d*x - 2*c) + (15*a^3 -
 a^2*b + 9*a*b^2 + 9*b^3)*e^(-4*d*x - 4*c) + (5*a^3 - a^2*b - 9*a*b^2 - 3*b^3)*e^(-6*d*x - 6*c))/((a^6 + 4*a^5
*b + 6*a^4*b^2 + 4*a^3*b^3 + a^2*b^4 + 4*(a^6 + 2*a^5*b - 2*a^3*b^3 - a^2*b^4)*e^(-2*d*x - 2*c) + 2*(3*a^6 + 4
*a^5*b + 2*a^4*b^2 + 4*a^3*b^3 + 3*a^2*b^4)*e^(-4*d*x - 4*c) + 4*(a^6 + 2*a^5*b - 2*a^3*b^3 - a^2*b^4)*e^(-6*d
*x - 6*c) + (a^6 + 4*a^5*b + 6*a^4*b^2 + 4*a^3*b^3 + a^2*b^4)*e^(-8*d*x - 8*c))*d) - 3/8*arctan(1/2*((a + b)*e
^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/(sqrt(a*b)*a^2*d)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 2768 vs. \(2 (82) = 164\).
time = 0.41, size = 5840, normalized size = 60.83 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^2/(a+b*tanh(d*x+c)^2)^3,x, algorithm="fricas")

[Out]

[-1/16*(4*(5*a^4*b - a^3*b^2 - 9*a^2*b^3 - 3*a*b^4)*cosh(d*x + c)^6 + 24*(5*a^4*b - a^3*b^2 - 9*a^2*b^3 - 3*a*
b^4)*cosh(d*x + c)*sinh(d*x + c)^5 + 4*(5*a^4*b - a^3*b^2 - 9*a^2*b^3 - 3*a*b^4)*sinh(d*x + c)^6 + 20*a^4*b +
52*a^3*b^2 + 44*a^2*b^3 + 12*a*b^4 + 4*(15*a^4*b - a^3*b^2 + 9*a^2*b^3 + 9*a*b^4)*cosh(d*x + c)^4 + 4*(15*a^4*
b - a^3*b^2 + 9*a^2*b^3 + 9*a*b^4 + 15*(5*a^4*b - a^3*b^2 - 9*a^2*b^3 - 3*a*b^4)*cosh(d*x + c)^2)*sinh(d*x + c
)^4 + 16*(5*(5*a^4*b - a^3*b^2 - 9*a^2*b^3 - 3*a*b^4)*cosh(d*x + c)^3 + (15*a^4*b - a^3*b^2 + 9*a^2*b^3 + 9*a*
b^4)*cosh(d*x + c))*sinh(d*x + c)^3 + 4*(15*a^4*b + 13*a^3*b^2 - 11*a^2*b^3 - 9*a*b^4)*cosh(d*x + c)^2 + 4*(15
*a^4*b + 13*a^3*b^2 - 11*a^2*b^3 - 9*a*b^4 + 15*(5*a^4*b - a^3*b^2 - 9*a^2*b^3 - 3*a*b^4)*cosh(d*x + c)^4 + 6*
(15*a^4*b - a^3*b^2 + 9*a^2*b^3 + 9*a*b^4)*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 3*((a^4 + 4*a^3*b + 6*a^2*b^2 +
4*a*b^3 + b^4)*cosh(d*x + c)^8 + 8*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(d*x + c)*sinh(d*x + c)^7 +
 (a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*sinh(d*x + c)^8 + 4*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(d*x + c)
^6 + 4*(a^4 + 2*a^3*b - 2*a*b^3 - b^4 + 7*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(d*x + c)^2)*sinh(d*
x + c)^6 + 8*(7*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(d*x + c)^3 + 3*(a^4 + 2*a^3*b - 2*a*b^3 - b^4
)*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(3*a^4 + 4*a^3*b + 2*a^2*b^2 + 4*a*b^3 + 3*b^4)*cosh(d*x + c)^4 + 2*(35*(
a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(d*x + c)^4 + 3*a^4 + 4*a^3*b + 2*a^2*b^2 + 4*a*b^3 + 3*b^4 + 3
0*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4
 + 8*(7*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(d*x + c)^5 + 10*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(
d*x + c)^3 + (3*a^4 + 4*a^3*b + 2*a^2*b^2 + 4*a*b^3 + 3*b^4)*cosh(d*x + c))*sinh(d*x + c)^3 + 4*(a^4 + 2*a^3*b
 - 2*a*b^3 - b^4)*cosh(d*x + c)^2 + 4*(7*(a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(d*x + c)^6 + 15*(a^4
 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(d*x + c)^4 + a^4 + 2*a^3*b - 2*a*b^3 - b^4 + 3*(3*a^4 + 4*a^3*b + 2*a^2*b^2 +
 4*a*b^3 + 3*b^4)*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 8*((a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4)*cosh(d*x +
 c)^7 + 3*(a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(d*x + c)^5 + (3*a^4 + 4*a^3*b + 2*a^2*b^2 + 4*a*b^3 + 3*b^4)*co
sh(d*x + c)^3 + (a^4 + 2*a^3*b - 2*a*b^3 - b^4)*cosh(d*x + c))*sinh(d*x + c))*sqrt(-a*b)*log(((a^2 + 2*a*b + b
^2)*cosh(d*x + c)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^
4 + 2*(a^2 - b^2)*cosh(d*x + c)^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^2 + a^
2 - 6*a*b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^3 + (a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c) - 4*((a +
b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a - b)*sqrt(-a*b))/((a
+ b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(a - b)*cosh(d*x
+ c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a - b)*cosh(d*x
 + c))*sinh(d*x + c) + a + b)) + 8*(3*(5*a^4*b - a^3*b^2 - 9*a^2*b^3 - 3*a*b^4)*cosh(d*x + c)^5 + 2*(15*a^4*b
- a^3*b^2 + 9*a^2*b^3 + 9*a*b^4)*cosh(d*x + c)^3 + (15*a^4*b + 13*a^3*b^2 - 11*a^2*b^3 - 9*a*b^4)*cosh(d*x + c
))*sinh(d*x + c))/((a^7*b + 4*a^6*b^2 + 6*a^5*b^3 + 4*a^4*b^4 + a^3*b^5)*d*cosh(d*x + c)^8 + 8*(a^7*b + 4*a^6*
b^2 + 6*a^5*b^3 + 4*a^4*b^4 + a^3*b^5)*d*cosh(d*x + c)*sinh(d*x + c)^7 + (a^7*b + 4*a^6*b^2 + 6*a^5*b^3 + 4*a^
4*b^4 + a^3*b^5)*d*sinh(d*x + c)^8 + 4*(a^7*b + 2*a^6*b^2 - 2*a^4*b^4 - a^3*b^5)*d*cosh(d*x + c)^6 + 4*(7*(a^7
*b + 4*a^6*b^2 + 6*a^5*b^3 + 4*a^4*b^4 + a^3*b^5)*d*cosh(d*x + c)^2 + (a^7*b + 2*a^6*b^2 - 2*a^4*b^4 - a^3*b^5
)*d)*sinh(d*x + c)^6 + 2*(3*a^7*b + 4*a^6*b^2 + 2*a^5*b^3 + 4*a^4*b^4 + 3*a^3*b^5)*d*cosh(d*x + c)^4 + 8*(7*(a
^7*b + 4*a^6*b^2 + 6*a^5*b^3 + 4*a^4*b^4 + a^3*b^5)*d*cosh(d*x + c)^3 + 3*(a^7*b + 2*a^6*b^2 - 2*a^4*b^4 - a^3
*b^5)*d*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(35*(a^7*b + 4*a^6*b^2 + 6*a^5*b^3 + 4*a^4*b^4 + a^3*b^5)*d*cosh(d*
x + c)^4 + 30*(a^7*b + 2*a^6*b^2 - 2*a^4*b^4 - a^3*b^5)*d*cosh(d*x + c)^2 + (3*a^7*b + 4*a^6*b^2 + 2*a^5*b^3 +
 4*a^4*b^4 + 3*a^3*b^5)*d)*sinh(d*x + c)^4 + 4*(a^7*b + 2*a^6*b^2 - 2*a^4*b^4 - a^3*b^5)*d*cosh(d*x + c)^2 + 8
*(7*(a^7*b + 4*a^6*b^2 + 6*a^5*b^3 + 4*a^4*b^4 + a^3*b^5)*d*cosh(d*x + c)^5 + 10*(a^7*b + 2*a^6*b^2 - 2*a^4*b^
4 - a^3*b^5)*d*cosh(d*x + c)^3 + (3*a^7*b + 4*a^6*b^2 + 2*a^5*b^3 + 4*a^4*b^4 + 3*a^3*b^5)*d*cosh(d*x + c))*si
nh(d*x + c)^3 + 4*(7*(a^7*b + 4*a^6*b^2 + 6*a^5*b^3 + 4*a^4*b^4 + a^3*b^5)*d*cosh(d*x + c)^6 + 15*(a^7*b + 2*a
^6*b^2 - 2*a^4*b^4 - a^3*b^5)*d*cosh(d*x + c)^4 + 3*(3*a^7*b + 4*a^6*b^2 + 2*a^5*b^3 + 4*a^4*b^4 + 3*a^3*b^5)*
d*cosh(d*x + c)^2 + (a^7*b + 2*a^6*b^2 - 2*a^4*b^4 - a^3*b^5)*d)*sinh(d*x + c)^2 + (a^7*b + 4*a^6*b^2 + 6*a^5*
b^3 + 4*a^4*b^4 + a^3*b^5)*d + 8*((a^7*b + 4*a^6*b^2 + 6*a^5*b^3 + 4*a^4*b^4 + a^3*b^5)*d*cosh(d*x + c)^7 + 3*
(a^7*b + 2*a^6*b^2 - 2*a^4*b^4 - a^3*b^5)*d*cos...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\operatorname {sech}^{2}{\left (c + d x \right )}}{\left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**2/(a+b*tanh(d*x+c)**2)**3,x)

[Out]

Integral(sech(c + d*x)**2/(a + b*tanh(c + d*x)**2)**3, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 320 vs. \(2 (82) = 164\).
time = 1.01, size = 320, normalized size = 3.33 \begin {gather*} \frac {\frac {3 \, \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{\sqrt {a b} a^{2}} - \frac {2 \, {\left (5 \, a^{3} e^{\left (6 \, d x + 6 \, c\right )} - a^{2} b e^{\left (6 \, d x + 6 \, c\right )} - 9 \, a b^{2} e^{\left (6 \, d x + 6 \, c\right )} - 3 \, b^{3} e^{\left (6 \, d x + 6 \, c\right )} + 15 \, a^{3} e^{\left (4 \, d x + 4 \, c\right )} - a^{2} b e^{\left (4 \, d x + 4 \, c\right )} + 9 \, a b^{2} e^{\left (4 \, d x + 4 \, c\right )} + 9 \, b^{3} e^{\left (4 \, d x + 4 \, c\right )} + 15 \, a^{3} e^{\left (2 \, d x + 2 \, c\right )} + 13 \, a^{2} b e^{\left (2 \, d x + 2 \, c\right )} - 11 \, a b^{2} e^{\left (2 \, d x + 2 \, c\right )} - 9 \, b^{3} e^{\left (2 \, d x + 2 \, c\right )} + 5 \, a^{3} + 13 \, a^{2} b + 11 \, a b^{2} + 3 \, b^{3}\right )}}{{\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} {\left (a e^{\left (4 \, d x + 4 \, c\right )} + b e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} - 2 \, b e^{\left (2 \, d x + 2 \, c\right )} + a + b\right )}^{2}}}{8 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^2/(a+b*tanh(d*x+c)^2)^3,x, algorithm="giac")

[Out]

1/8*(3*arctan(1/2*(a*e^(2*d*x + 2*c) + b*e^(2*d*x + 2*c) + a - b)/sqrt(a*b))/(sqrt(a*b)*a^2) - 2*(5*a^3*e^(6*d
*x + 6*c) - a^2*b*e^(6*d*x + 6*c) - 9*a*b^2*e^(6*d*x + 6*c) - 3*b^3*e^(6*d*x + 6*c) + 15*a^3*e^(4*d*x + 4*c) -
 a^2*b*e^(4*d*x + 4*c) + 9*a*b^2*e^(4*d*x + 4*c) + 9*b^3*e^(4*d*x + 4*c) + 15*a^3*e^(2*d*x + 2*c) + 13*a^2*b*e
^(2*d*x + 2*c) - 11*a*b^2*e^(2*d*x + 2*c) - 9*b^3*e^(2*d*x + 2*c) + 5*a^3 + 13*a^2*b + 11*a*b^2 + 3*b^3)/((a^4
 + 2*a^3*b + a^2*b^2)*(a*e^(4*d*x + 4*c) + b*e^(4*d*x + 4*c) + 2*a*e^(2*d*x + 2*c) - 2*b*e^(2*d*x + 2*c) + a +
 b)^2))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\mathrm {cosh}\left (c+d\,x\right )}^2\,{\left (b\,{\mathrm {tanh}\left (c+d\,x\right )}^2+a\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cosh(c + d*x)^2*(a + b*tanh(c + d*x)^2)^3),x)

[Out]

int(1/(cosh(c + d*x)^2*(a + b*tanh(c + d*x)^2)^3), x)

________________________________________________________________________________________